Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Appl Clin Med Phys ; 25(4): e14323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426612

RESUMEN

The Elekta Unity magnetic resonance (MR) linac is limited to longitudinal couch motion and a sagittal-only laser, which restricts the ability to perform patient-specific quality assurance (PSQA) intensity-modulated radiotherapy (IMRT) measurements for very lateral targets. This work introduces a simple method to perform PSQA using the Sun Nuclear ArcCheck-MR phantom at left and right lateral positions without additional equipment or in-house construction. The proposed setup places the center of the phantom 1.3 cm vertical and 12.9 cm lateral to isocenter in either the left or right direction. Computed tomography (CT) scans are used to simulate the setup and create a QA plan template in the Monaco treatment planning system (TPS). The workflow is demonstrated for four patients, with an average axial distance from the center of the bore to the planning target volume (PTV) of 12.4 cm. Gamma pass rates were above 94% for all plans using global 3%/2 mm gamma criterion with a 10% threshold. Setup uncertainties are slightly larger for the proposed lateral setup compared to the centered setup on the Elekta platform (∼1 mm compared to ∼0.5 mm), but acceptable pass rates are achievable without optimizing shifts in the gamma analysis software. In general, adding the left and right lateral positions increases the axial area in the bore encompassed by the cylindrical measurement array by 147%, substantially increasing the flexibility of measurements for offset targets. Based on this work, we propose using the lateral QA setup if the closest distance to the PTV edge from isocenter is larger than the array radius (10.5 cm) or the percent of the PTV encompassed by the diode array would be increased with the lateral setup compared to the centered setup.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Imagen por Resonancia Magnética , Aceleradores de Partículas , Radioterapia de Intensidad Modulada/métodos , Espectroscopía de Resonancia Magnética , Dosificación Radioterapéutica
2.
Sci Rep ; 14(1): 3380, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336828

RESUMEN

Optical coherence tomography (OCT) has become a key method for diagnosing and staging radiation retinopathy, based mainly on the presence of fluid in the central macula. A robust retinal layer segmentation method is required for identification of the specific layers involved in radiation-induced pathology in individual eyes over time, in order to determine damage driven by radiation injury to the microvessels and to the inner retinal neurons. Here, we utilized OCT, OCT-angiography, visual field testing, and patient-specific dosimetry models to analyze abnormal retinal layer thickening and thinning relative to microvessel density, visual function, radiation dose, and time from radiotherapy in a cross-sectional cohort of uveal melanoma patients treated with 125I-plaque brachytherapy. Within the first 24 months of radiotherapy, we show differential thickening and thinning of the two inner retinal layers, suggestive of microvessel leakage and neurodegeneration, mostly favoring thickening. Four out of 13 eyes showed decreased inner retinal capillary density associated with a corresponding normal inner retinal thickness, indicating early microvascular pathology. Two eyes showed the opposite: significant inner retinal layer thinning and normal capillary density, indicating early neuronal damage preceding a decrease in capillary density. At later time points, inner retinal thinning becomes the dominant pathology and correlates significantly with decreased vascularity, vision loss, and dose to the optic nerve. Stable multiple retinal layer segmentation provided by 3D graph-based methods aids in assessing the microvascular and neuronal response to radiation, information needed to target therapeutics for radiation retinopathy and vision loss.


Asunto(s)
Traumatismos por Radiación , Degeneración Retiniana , Neuronas Retinianas , Humanos , Pruebas del Campo Visual , Tomografía de Coherencia Óptica/métodos , Estudios Transversales , Retina/diagnóstico por imagen , Retina/patología , Neuronas Retinianas/patología , Degeneración Retiniana/patología , Traumatismos por Radiación/etiología , Traumatismos por Radiación/patología
3.
Adv Radiat Oncol ; 9(1): 101336, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38260219

RESUMEN

Purpose: The purpose of this work was to investigate the use of a segmentation approach that could potentially improve the speed and reproducibility of contouring during magnetic resonance-guided adaptive radiation therapy. Methods and Materials: The segmentation algorithm was based on a hybrid deep neural network and graph optimization approach that also allows rapid user intervention (Deep layered optimal graph image segmentation of multiple objects and surfaces [LOGISMOS] + just enough interaction [JEI]). A total of 115 magnetic resonance-data sets were used for training and quantitative assessment. Expert segmentations were used as the independent standard for the prostate, seminal vesicles, bladder, rectum, and femoral heads for all 115 data sets. In addition, 3 independent radiation oncologists contoured the prostate, seminal vesicles, and rectum for a subset of patients such that the interobserver variability could be quantified. Consensus contours were then generated from these independent contours using a simultaneous truth and performance level estimation approach, and the deviation of Deep LOGISMOS + JEI contours to the consensus contours was evaluated and compared with the interobserver variability. Results: The absolute accuracy of Deep LOGISMOS + JEI generated contours was evaluated using median absolute surface-to-surface distance which ranged from a minimum of 0.20 mm for the bladder to a maximum of 0.93 mm for the prostate compared with the independent standard across all data sets. The median relative surface-to-surface distance was less than 0.17 mm for all organs, indicating that the Deep LOGISMOS + JEI algorithm did not exhibit a systematic under- or oversegmentation. Interobserver variability testing yielded a mean absolute surface-to-surface distance of 0.93, 1.04, and 0.81 mm for the prostate, seminal vesicles, and rectum, respectively. In comparison, the deviation of Deep LOGISMOS + JEI from consensus simultaneous truth and performance level estimation contours was 0.57, 0.64, and 0.55 mm for the same organs. On average, the Deep LOGISMOS algorithm took less than 26 seconds for contour segmentation. Conclusions: Deep LOGISMOS + JEI segmentation efficiently generated clinically acceptable prostate and normal tissue contours, potentially limiting the need for time intensive manual contouring with each fraction.

4.
Biomed Phys Eng Express ; 9(6)2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37832529

RESUMEN

Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.


Asunto(s)
Terapia de Protones , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Fantasmas de Imagen , Radiometría
5.
Biomed Phys Eng Express ; 9(4)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37267924

RESUMEN

Objective. Proton therapy conformity has improved over the years by evolving from passive scattering to spot scanning delivery technologies with smaller proton beam spot sizes. Ancillary collimation devices, such the Dynamic Collimation System (DCS), further improves high dose conformity by sharpening the lateral penumbra. However, as spot sizes are reduced, collimator positional errors play a significant impact on the dose distributions and hence accurate collimator to radiation field alignment is critical.Approach. The purpose of this work was to develop a system to align and verify coincidence between the center of the DCS and the proton beam central axis. The Central Axis Alignment Device (CAAD) is composed of a camera and scintillating screen-based beam characterization system. Within a light-tight box, a 12.3-megapixel camera monitors a P43/Gadox scintillating screen via a 45° first-surface mirror. When a collimator trimmer of the DCS is placed in the uncalibrated center of the field, the proton radiation beam continuously scans a 7×7 cm2square field across the scintillator and collimator trimmer while a 7 s exposure is acquired. From the relative positioning of the trimmer to the radiation field, the true center of the radiation field can be calculated.Main results.The CAAD can calculate the offset between the proton beam radiation central axis and the DCS central axis within 0.054 mm accuracy and 0.075 mm reproducibility.Significance.Using the CAAD, the DCS is now able to be aligned accurately to the proton radiation beam central axis and no longer relies on an x-ray source in the gantry head which is only validated to within 1.0 mm of the proton beam.


Asunto(s)
Terapia de Protones , Protones , Reproducibilidad de los Resultados , Fantasmas de Imagen
6.
Med Phys ; 50(11): 7263-7280, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37370239

RESUMEN

BACKGROUND: The Dynamic Collimation System (DCS) has been shown to produce superior treatment plans to uncollimated pencil beam scanning (PBS) proton therapy using an in-house treatment planning system (TPS) designed for research. Clinical implementation of the DCS requires the development and benchmarking of a rigorous dose calculation algorithm that accounts for pencil beam trimming, performs monitor unit calculations to produce deliverable plans at all beam energies, and is ideally implemented with a commercially available TPS. PURPOSE: To present an analytical Pencil bEam TRimming Algorithm (PETRA) for the DCS, with and without its range shifter, implemented in the Astroid TPS (.decimal, Sanford, Florida, USA). MATERIALS: PETRA was derived by generalizing an existing pencil beam dose calculation model to account for the DCS-specific effects of lateral penumbra blurring due to the nickel trimmers in two different planes, integral depth dose variation due to the trimming process, and the presence and absence of the range shifter. Tuning parameters were introduced to enable agreement between PETRA and a measurement-validated Dynamic Collimation Monte Carlo (DCMC) model of the Miami Cancer Institute's IBA Proteus Plus system equipped with the DCS. Trimmer position, spot position, beam energy, and the presence or absence of a range shifter were all used as variables for the characterization of the model. The model was calibrated for pencil beam monitor unit calculations using procedures specified by International Atomic Energy Agency Technical Report Series 398 (IAEA TRS-398). RESULTS: The integral depth dose curves (IDDs) for energies between 70 MeV and 160 MeV among all simulated trimmer combinations, with and without the ranger shifter, agreed between PETRA and DCMC at the 1%/1 mm 1-D gamma criteria for 99.99% of points. For lateral dose profiles, the median 2-D gamma pass rate for all profiles at 1.5%/1.5 mm was 99.99% at the water phantom surface, plateau, and Bragg peak depths without the range shifter and at the surface and Bragg peak depths with the range shifter. The minimum 1.5%/1.5 mm gamma pass rates for the 2-D profiles at the water phantom surface without and with the range shifter were 98.02% and 97.91%, respectively, and, at the Bragg peak, the minimum pass rates were 97.80% and 97.5%, respectively. CONCLUSION: The PETRA model for DCS dose calculations was successfully defined and benchmarked for use in a commercially available TPS.


Asunto(s)
Terapia de Protones , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica , Algoritmos , Fantasmas de Imagen , Método de Montecarlo , Agua
7.
Front Oncol ; 13: 1098593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152034

RESUMEN

Purpose: This study assesses the impact of intra-fraction motion and PTV margin size on target coverage for patients undergoing radiation treatment of pelvic oligometastases. Dosimetric sparing of the bowel as a function of the PTV margin is also evaluated. Materials and methods: Seven patients with pelvic oligometastases previously treated on our MR-linac (35 Gy in 5 fractions) were included in this study. Retrospective adaptive plans were created for each fraction on the daily MRI datasets using PTV margins of 5 mm, 3 mm, and 2 mm. Dosimetric constraint violations and GTV coverage were measured as a function of PTV margin size. The impact of intra-fraction motion on GTV coverage was assessed by tracking the GTV position on the cine MR images acquired during treatment delivery and creating an intra-fraction dose distribution for each IMRT beam. The intra-fraction dose was accumulated for each fraction to determine the total dose delivered to the target for each PTV size. Results: All OAR constraints were achieved in 85.7%, 94.3%, and 100.0% of fractions when using 5 mm, 3 mm, and 2 mm PTV margins while scaling to 95% PTV coverage. Compared to plans with a 5 mm PTV margin, there was a 27.4 ± 12.3% (4.0 ± 2.2 Gy) and an 18.5 ± 7.3% (2.7 ± 1.4 Gy) reduction in the bowel D0.5cc dose for 2 mm and 3 mm PTV margins, respectively. The target dose (GTV V35 Gy) was on average 100.0 ± 0.1% (99.6 - 100%), 99.6 ± 1.0% (97.2 - 100%), and 99.0 ± 1.4% (95.0 - 100%), among all fractions for the 5 mm, 3 mm, and 2 mm PTV margins on the adaptive plans when accounting for intra-fraction motion, respectively. Conclusion: A 2 mm PTV margin achieved a minimum of 95% GTV coverage while reducing the dose to the bowel for all patients.

8.
Surg Oncol Clin N Am ; 32(3): 599-615, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37182995

RESUMEN

Image guidance for radiation therapy (RT) has evolved over the last few decades and now is routinely performed using cone-beam computerized tomography (CBCT). Conventional linear accelerators (LINACs) that use CBCT have limited soft tissue contrast, are not able to image the patient's internal anatomy during treatment delivery, and most are not capable of online adaptive replanning. RT delivery systems that use MRI have become available within the last several years and address many of the imaging limitations of conventional LINACs. Herein, the authors review the technical characteristics and advantages of MRI-guided RT as well as emerging clinical outcomes.


Asunto(s)
Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Tomografía Computarizada de Haz Cónico/métodos , Aceleradores de Partículas , Imagen por Resonancia Magnética/métodos , Planificación de la Radioterapia Asistida por Computador/métodos
9.
Ophthalmol Retina ; 7(7): 620-627, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36822323

RESUMEN

PURPOSE: (1) To describe the technique of postoperative echography to confirm the intended treatment dose to the tumor apex in patients with uveal melanoma treated with plaque brachytherapy. (2) To describe the local tumor control rate and visual outcomes with the brachytherapy strategies used at our institution. DESIGN: Retrospective review. SUBJECTS: Three hundred seventy-two consecutive patients with uveal melanoma (small, medium, and large) treated with plaque brachytherapy at the University of Iowa from August 2008 to February 2019. METHODS: Patient demographics and tumor characteristics were recorded for each patient. Patients with posterior tumors treated with plaque brachytherapy (n = 355) underwent intraoperative ultrasound to confirm plaque placement, and additional postoperative ultrasound on day 1 to 3 postplaque insertion. In cases where intratumor/episcleral plaque edema or hemorrhage shifted the dose to the prescription point to < 85 Gray (Gy), the duration of plaque brachytherapy was increased to compensate. Statistical analysis was performed to compare variables associated with the need for plaque adjustment. MAIN OUTCOMES MEASURES: Variables associated with plaque dose needing to be recalculated, local tumor control, and visual acuity outcomes. RESULTS: In 31 (8.3%) cases, postoperative echography showed that the tumor apex had shifted outside the 85 Gy isodose curve, requiring adjustment of the duration of brachytherapy (28 cases) or repositioning of the plaque (3 cases). Collaborative Ocular Melanoma Study tumor size was significantly associated with need to adjust the plaque prescription dose (P = 0.03), with large tumors having the highest rate of adjustment. Tumor thickness was larger in cases requiring plaque adjustment compared with those that were not adjusted (median 4.9 mm vs. 3.0 mm, P < 0.01). Local tumor control was 99% (95% confidence interval, 97%-100%) at 5 years and 99% (95% confidence interval, 97%-100%) at 10 years. The percentage of patients who had experienced a visual acuity decline of ≥ 3 lines of vision or had < 20/200 acuity was 14.9% at 1 year after brachytherapy, 35.3% at 3 years, and 51.6% at 5 years. CONCLUSIONS: Postoperative ultrasound performed on postoperative day 1 to 3 after plaque insertion for patients undergoing brachytherapy for uveal melanoma may result in improved local tumor control, particularly in the setting of thicker or larger tumors. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.


Asunto(s)
Braquiterapia , Melanoma , Neoplasias de la Úvea , Humanos , Braquiterapia/efectos adversos , Neoplasias de la Úvea/diagnóstico , Neoplasias de la Úvea/radioterapia , Melanoma/diagnóstico , Melanoma/radioterapia , Radiometría , Ultrasonografía
10.
Phys Med Biol ; 68(5)2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36706460

RESUMEN

Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.


Asunto(s)
Terapia de Protones , Planificación de la Radioterapia Asistida por Computador , Planificación de la Radioterapia Asistida por Computador/métodos , Terapia de Protones/métodos , Dosificación Radioterapéutica , Fantasmas de Imagen , Método de Montecarlo
11.
Front Oncol ; 13: 1325105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38260830

RESUMEN

Purpose: This study simulates a novel prostate SBRT intra-fraction re-optimization workflow in MRIgART to account for prostate intra-fraction motion and evaluates the dosimetric benefit of reducing PTV margins. Materials and methods: VMAT prostate SBRT treatment plans were created for 10 patients using two different PTV margins, one with a 5 mm margin except 3 mm posteriorly (standard) and another using uniform 2 mm margins (reduced). All plans were prescribed to 36.25 Gy in 5 fractions and adapted onto each daily MRI dataset. An intra-fraction adaptive workflow was simulated for the reduced margin group by synchronizing the radiation delivery with target position from cine MRI imaging. Intra-fraction delivered dose was reconstructed and prostate DVH metrics were evaluated under three conditions for the reduced margin plans: Without motion compensation (no-adapt), with a single adapt prior to treatment (ATP), and lastly for intra-fraction re-optimization during delivery (intra). Bladder and rectum DVH metrics were compared between the standard and reduced margin plans. Results: As expected, rectum V18 Gy was reduced by 4.4 ± 3.9%, D1cc was reduced by 12.2 ± 6.8% (3.4 ± 2.3 Gy), while bladder reductions were 7.8 ± 5.6% for V18 Gy, and 9.6 ± 7.3% (3.4 ± 2.5 Gy) for D1cc for the reduced margin reference plans compared to the standard PTV margin. For the intrafraction replanning approach, average intra-fraction optimization times were 40.0 ± 2.9 seconds, less than the time to deliver one of the four VMAT arcs (104.4 ± 9.3 seconds) used for treatment delivery. When accounting for intra-fraction motion, prostate V36.25 Gy was on average 96.5 ± 4.0%, 99.1 ± 1.3%, and 99.6 ± 0.4 for the non-adapt, ATP, and intra-adapt groups, respectively. The minimum dose received by the prostate was less than 95% of the prescription dose in 84%, 36%, and 10% of fractions, for the non-adapt, ATP, and intra-adapt groups, respectively. Conclusions: Intra-fraction re-optimization improves prostate coverage, specifically the minimum dose to the prostate, and enables PTV margin reduction and subsequent OAR sparing. Fast re-optimizations enable uninterrupted treatment delivery.

12.
Ocul Oncol Pathol ; 9(1-2): 56-61, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38376093

RESUMEN

Introduction: There is an increase in pigmentation that occurs in many tumors following plaque brachytherapy for choroidal melanoma. Correctly distinguishing between increased pigment at the tumor border versus true growth is imperative. We performed a retrospective review of patients treated with I-125 brachytherapy for choroidal melanoma at our institution to study this phenomenon. Methods: Records were reviewed for all patients undergoing plaque brachytherapy for uveal melanoma for a 5-year period (N = 195). Patients with iris and anterior tumors were excluded. Tumors treated more than 31 days after presentation were excluded. Fundus images for patients with increased pigmentation at any of the borders of the tumor at 6-month follow-up that extended beyond the initial pigmented margin were included (N = 20; 8 F, 12 M). Imaging at the last follow-up was reviewed, and it was confirmed that all tumors involuted appropriately with no evidence of local recurrence. The date of initial exam, time to treatment, and follow-up interval were recorded for each included patient. Results: Twenty patients (10%) exhibited increased pigment deposition at any of the borders of the tumor at 6-month follow-up that extended beyond the initial pigmented margin. Average tumor thickness was 3.2 mm (1.3-5.1); average largest tumor basal diameter was 11.6 mm (7-15.5). Average time from diagnosis to treatment was 25 days (17-31). Average length of follow-up was 35 months (16-68). No patient developed recurrence during the duration of follow-up, and 1 patient had developed metastasis. Conclusion: We describe the phenomenon of increased pigment deposition, "edge creep," at the borders of choroidal melanomas treated with plaque brachytherapy that gave the appearance of initial tumor growth but then subsequently remained stable over time. It is important that treating ocular oncologists be aware of this phenomenon to avoid unnecessary diagnosis of local recurrence.

13.
Sci Rep ; 12(1): 21731, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526670

RESUMEN

The advent of energy-specific collimation in pencil beam scanning (PBS) proton therapy has led to an improved lateral dose conformity for a variety of treatment sites, resulting in better healthy tissue sparing. Arc PBS delivery has also been proposed to enhance high-dose conformity about the intended target, reduce skin toxicity, and improve plan robustness. The goal of this work was to determine if the combination of proton arc and energy-specific collimation can generate better dose distributions as a logical next step to maximize the dosimetric advantages of proton therapy. Plans were optimized using a novel DyNamically collimated proton Arc (DNA) genetic optimization algorithm that was designed specifically for the application of proton arc therapy. A treatment planning comparison study was performed by generating an uncollimated two-field intensity modulated proton therapy and partial arc treatments and then replanning these treatments using energy-specific collimation as delivered by a dynamic collimation system, which is a novel collimation technology for PBS. As such, we refer to this novel treatment paradigm as Dynamically Collimated Proton Arc Therapy (DC-PAT). Arc deliveries achieved a superior target conformity and improved organ at risk (OAR) sparing relative to their two-field counterparts at the cost of an increase to the low-dose, high-volume region of the healthy brain. The incorporation of DC-PAT using the DNA optimizer was shown to further improve the tumor dose conformity. When compared to the uncollimated proton arc treatments, the mean dose to the 10mm of surrounding healthy tissue was reduced by 11.4% with the addition of collimation without meaningfully affecting the maximum skin dose (less than 1% change) relative to a multi-field treatment. In this case study, DC-PAT could better spare specific OARs while maintaining better target coverage compared to uncollimated proton arc treatments. While this work presents a proof-of-concept integration of two emerging technologies, the results are promising and suggest that the addition of these two techniques can lead to superior treatment plans warranting further development.


Asunto(s)
Terapia de Protones , Radioterapia de Intensidad Modulada , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Protones , Algoritmos , Radioterapia de Intensidad Modulada/métodos
14.
Front Oncol ; 12: 962926, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419881

RESUMEN

Purpose: To demonstrate the clinical applications and feasibility of online adaptive magnetic resonance image guided radiotherapy (MRgRT) in the pediatric, adolescent and young adult (AYA) population. Methods: This is a retrospective case series of patients enrolled onto a prospective study. All pediatric (age < 18) and AYA patients (age< 30), treated on the Elekta Unity MR linear accelerator (MRL) from 2019 to 2021 were enrolled onto a prospective registry. Rationale for MRgRT included improved visualization of and alignment to the primary tumor, re-irradiation in a critical area, ability to use smaller margins, and need for daily adaptive replanning to minimize dose to adjacent critical structures. Step-and-shoot intensity-modulated radiation treatment (IMRT) plans were generated for all Unity patients with a dose grid of 3 mm and a statistical uncertainty of < 1% per plan. Results: A total of 15 pediatric and AYA patients have been treated with median age of 13 years (range: 6 mos - 27 yrs). Seven patients were <10 yo. The clinical applications of MRgRT included Wilms tumor with unresectable IVC thrombus (n=1), Ewing sarcoma (primary and metastatic, n=3), recurrent diffuse intrinsic pontine glioma (DIPG, n=2), nasopharyngeal carcinoma (n=1), clival chordoma (n=1), primitive neuroectodermal tumor of the pancreas (n=1), recurrent gluteo-sacral germ cell tumor (n=1), C-spine ependymoma (n=1), and posterior fossa ependymoma (n=1). Two children required general anesthesia. One AYA patient could not complete the MRgRT course due to tumor-related pain exacerbated by longer treatment times. Two AYA patients experienced anxiety related to treatment on the MRL, one of which required daily Ativan. No patient experienced treatment interruptions or unexpected toxicity. Conclusion: MRgRT was well-tolerated by pediatric and AYA patients. There was no increased use of anesthesia outside of our usual practice. Dosimetric advantages were seen for patients with tumors in critical locations such as adjacent to or involving optic structures, stomach, kidney, bowel, and heart.

15.
BMC Ophthalmol ; 22(1): 285, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35765019

RESUMEN

BACKGROUND: To determine whether reductions in retinal and choroidal blood flow measured by laser speckle flowgraphy are detected after 125I-plaque brachytherapy for uveal melanoma. METHODS: In a cross-sectional study, retinal and choroidal blood flow were measured using laser speckle flowgraphy in 25 patients after treatment with 125I-plaque brachytherapy for uveal melanoma. Flow was analyzed in the peripapillary region by mean blur rate as well as in the entire image area with a novel superpixel-based method. Relationships between measures were determined by Spearman correlation. RESULTS: Significant decreases in laser speckle blood flow were observed in both the retinal and choroidal vascular beds of irradiated, but not fellow, eyes. Overall, 24 of 25 patients had decreased blood flow compared to their fellow eye, including 5 of the 6 patients imaged within the first 6 months following brachytherapy. A significant negative correlation between blood flow and time from therapy was present. CONCLUSIONS: Decreases in retinal and choroidal blood flow by laser speckle flowgraphy were detected within the first 6 months following brachytherapy. Reduced retinal and choroidal blood flow may be an early indicator of microangiographic response to radiation therapy.


Asunto(s)
Braquiterapia , Velocidad del Flujo Sanguíneo/fisiología , Coroides/irrigación sanguínea , Estudios Transversales , Humanos , Radioisótopos de Yodo , Flujometría por Láser-Doppler , Rayos Láser , Melanoma , Neoplasias de la Úvea
16.
J Med Device ; 16(2): 021013, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284033

RESUMEN

Radiation therapy is integral to cancer treatments for more than half of patients. Pencil beam scanning (PBS) proton therapy is the latest radiation therapy technology that uses a beam of protons that are magnetically steered and delivered to the tumor. One of the limiting factors of PBS accuracy is the beam cross-sectional size, similar to how a painter is only as accurate as the size of their brush allows. To address this, collimators can be used to shape the beam along the tumor edge to minimize the dose spread outside of the tumor. Under development is a dynamic collimation system (DCS) that uses two pairs of nickel trimmers that collimate the beam at the tumor periphery, limiting dose from spilling into healthy tissue. Herein, we establish the dosimetric and mechanical acceptance criteria for the DCS based on a functioning prototype and Monte Carlo methods, characterize the mechanical accuracy of the prototype, and validate that the acceptance criteria are met. From Monte Carlo simulations, we found that the trimmers must be positioned within ±0.5 mm and ±1.0 deg for the dose distributions to pass our gamma analysis. We characterized the trimmer positioners at jerk values up to 400 m/s3 and validated their accuracy to 50 µm. We measured and validated the rotational trimmer accuracy to ±0.5 deg with a FARO® ScanArm. Lastly, we calculated time penalties associated with the DCS and found that the additional time required to treat one field using the DCS varied from 25-52 s.

17.
J Clin Med ; 11(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35329988

RESUMEN

MR-guided adaptive radiotherapy (MRgART) provides opportunities to benefit patients through enhanced use of advanced imaging during treatment for many patients with various cancer treatment sites. This novel technology presents many new challenges which vary based on anatomic treatment location, technique, and potential changes of both tumor and normal tissue during treatment. When introducing new treatment sites, considerations regarding appropriate patient selection, treatment planning, immobilization, and plan-adaption criteria must be thoroughly explored to ensure adequate treatments are performed. This paper presents an institution's experience in developing a MRgART program for a 1.5T MR-linac for the first 234 patients. The paper suggests practical treatment workflows and considerations for treating with MRgART at different anatomical sites, including imaging guidelines, patient immobilization, adaptive workflows, and utilization of bolus.

18.
Med Phys ; 49(4): 2684-2698, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35120278

RESUMEN

PURPOSE: The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy-layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beamline to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods. METHODS: GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA-dedicated nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID-collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume-averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA universal and dedicated nozzles. RESULTS: Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1-mm gamma criterion with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in-depth profiles examined using a 3%/2-mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a trade-off between enhancing the valley-to-peak ratio of the GRID delivery and the dose-volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied. CONCLUSIONS: The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS-collimated GRID profiles.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Terapia de Protones/métodos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
19.
Biomed Phys Eng Express ; 8(2)2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35130520

RESUMEN

Purpose. The Dynamic Collimation System (DCS) is an energy layer-specific collimation device designed to reduce the lateral penumbra in pencil beam scanning proton therapy. The DCS consists of two pairs of nickel trimmers that rapidly and independently move and rotate to intercept the scanning proton beam and an integrated range shifter to treat targets less than 4 cm deep. This work examines the validity of a single aperture approximation to model the DCS, a commonly used approximation in commercial treatment planning systems, as well as higher-order aperture-based approximations for modeling DCS-collimated dose distributions.Methods. An experimentally validated TOPAS/Geant4-based Monte Carlo model of the DCS integrated with a beam model of the IBA pencil beam scanning dedicated nozzle was used to simulate DCS- and aperture-collimated 100 MeV beamlets and composite treatment plans. The DCS was represented by three different aperture approximations: a single aperture placed halfway between the upper and lower trimmer planes, two apertures located at the upper and lower trimmer planes, and four apertures, located at both the upstream and downstream faces of each pair of trimmers. Line profiles and three-dimensional regions of interest were used to evaluate the validity and limitations of the aperture approximations investigated.Results. For pencil beams without a range shifter, minimal differences were observed between the DCS and single aperture approximation. For range shifted beamlets, the single aperture approximation yielded wider penumbra widths (up to 18%) in the X-direction and sharper widths (up to 9.4%) in the Y-direction. For the example treatment plan, the root-mean-square errors (RMSEs) in an overall three-dimensional region of interest were 1.7%, 1.3%, and 1.7% for the single aperture, two aperture, and four aperture models, respectively. If the region of interest only encompasses the lateral edges outside of the target, the resulting RMSEs were 1.7%, 1.1%, and 0.5% single aperture, two aperture, and four aperture models, respectively.Conclusions. Monte Carlo simulations of the DCS demonstrated that a single aperture approximation is sufficient for modeling pristine fields at the Bragg depth while range shifted fields require a higher-order aperture approximation. For the treatment plan considered, the double aperture model performed the best overall, however, the four-aperture model most accurately modeled the lateral field edges at the expense of increased dose differences proximal to and within the target.


Asunto(s)
Terapia de Protones , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
20.
Phys Med Biol ; 67(5)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35130528

RESUMEN

Objective.Extended treatment session times are an operational limitation in magnetic resonance imaging guided adaptive radiotherapy (MRIgRT). In this study a novel leaf sequencing algorithm called optimal fluence levels (OFL) and an optimization algorithm called pseudo gradient descent (PGD) are evaluated with respect to plan quality, beam complexity, and the ability to reduce treatment session times on the Elekta Unity MRIgRT system.Approach.Ten total patients were evaluated on this Institutional Review Board approved study: three with prostate cancer, three with oligometastases, two with pancreatic cancer, and two with liver cancer. Plans were generated using the clinical Monaco Hyperion optimizer and leaf sequencer and then re-optimized using OFL and PGD (OFL + PGD) while holding all IMRT constraints and planning parameters constant. All plans were normalized to ensure 95% of the PTV received the prescription dose. A paired t-test was used to evaluate statistical significance.Main Results.Plan quality in terms of dosimetric OAR sparing was found to be equivalent between the OFL + PGD and conventional Monaco Hyperion optimizer plans. The OFL + PGD plans had a reduction in optimization time of 51.4% ± 5.0% (p = 0.002) and reduction in treatment delivery time of 10.6% ± 7.5% (p = 0.005). OFL + PGD generated plans had on average 13.2% ± 12.6% fewer multi-leaf collimator (MLC) segments (p = 0.009) and 0.1 ± 0.1 lower plan averaged beam modulation (PM) (p = 0.004) relative to the Monaco Hyperion plans.Significance.The OFL + PGD algorithms more quickly generate Unity treatment plans that are faster to deliver than with the conventional approach and without compromising dosimetric plan quality. This is likely due to a delivery complexity reduction enabled by OFL + PGD relative to the Monaco Hyperion plans.


Asunto(s)
Neoplasias Hepáticas , Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Algoritmos , Humanos , Imagen por Resonancia Magnética , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...